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Abstract
We present new results on the iron dynamics in the icosahedral quasicrystal i-AlCuFe and two
cubic approximants as well as the non-approximant Al–Cu–Fe cubic B2 phase. Conventional
Mössbauer spectroscopy is used as well as, for the i-AlCuFe phase, high Doppler velocity
Mössbauer spectroscopy and quasielastic neutron scattering for samples with different Fe
isotope contents. We show that in the i-phase the Fe Lamb–Mössbauer recoilless fraction
decreases below that predicted for lattice vibrations alone for temperatures above about 550 K.
This decrease is correlated with the onset of a quasielastic signal seen in both Mössbauer and
neutron backscattering spectroscopy, which indicates the presence above 550 K of Fe jump
processes confined in a local cage. The timescale of the Fe jumps (660 ps at 1000 K) and their
temperature dependence differ widely from those of Cu jumps in the same i-AlCuFe
quasicrystal. From the temperature dependence of the quadrupole splitting of the 57Fe
Mössbauer spectrum, one can distinguish two kinds of Fe jumps, one starting at 550 K and the
second above 800 K. In the two cubic approximants, a loss in the Fe recoilless fraction also
occurs above 550 K, revealing the same kind of Fe dynamics as in the i-phase but the effect is
smaller. On the other hand, no anomalous Fe dynamics (other than lattice vibrations) is detected
in the B2-AlCuFe phase. Since the cubic approximants possess similar local configurations as
the quasicrystal, we conclude that locally a Penrose tile description is appropriate. This shows
that the detected Fe jumps can be interpreted in terms of phason-like local tiling flips.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

After the discovery of quasicrystals (QCs), which have non-
periodic long range order and non-crystallographic icosahedral
point symmetry [1], it was obvious that this new type of order
might lead to original lattice dynamical properties in addition
to conventional phonons. Indeed, new low energy topological
defects, termed phasons, have been predicted [2–6]. Reviews
of the present understanding of phasons can be found in [7] as
well as the proceedings of the Jubilee Conference [8].

Phasons are also involved in deformation behaviour of
QCs. Information on phasons is required to clarify questions

on phase stability and diffusion [9], as well as QC ↔ periodic
approximant phase changes.

Aperiodic phases (consisting of incommensurably mod-
ulated phases, composites and quasicrystals) display sharp
diffraction peaks having a Fourier module with dimensionality
higher than physical space. Such structures can be described as
periodic in a higher dimensionality with atomic positions given
by the intersection of this higher-dimensional space with the
real physical space, denoted as parallel space. The additional
spatial dimensions are denoted as perpendicular space. Atoms
become surfaces in this description, extended in perpendicular
space. As a result of this higher-dimensional periodicity,
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new modes appear related to the phase of this intersection
(cut). These excitations are termed phasons. In quasiperiodic
structures, the atomic surfaces are in addition discontinuous,
so that phasons involve stoichiometry-preserving atomic jumps
from one atomic surface to a neighbouring one.

Phason elasticity in the (‘coarse grained’) hydrodynamic
limit has received intense theoretical treatment [10, 11]. In a
generalized linear elastic theory, the displacements vi become
ui in parallel and wi in perpendicular space, vi = (ui , wi ).
The phonon, phason and phonon–phason coupling terms of
the elastic free energy have been studied for a number of
different models. (For the following discussion see [12].) Due
to the discontinuous atomic surfaces the strain ∇wi (phason
strain) results in non-infinitesimal atomic jumps between
neighbouring atomic surfaces of some atoms or groups of
atoms. These are termed phason jumps. Even for coherent
long wavelength phason modes, these atoms or groups will
be relatively separated from each other. The hydrodynamic
theory [10] results in a dynamical phason relaxation. From
the equipartition theorem, the mean square fluctuations in v
are given by

〈vi (q)v j(q)〉 = kBT K −1
i j , (1)

where Ki j is the kinetic matrix describing the dynamics. This
leads to thermal fluctuations in phason fields with an associated
Debye–Waller factor. Such effects have been observed in x-ray
diffraction [13, 14]. Since the Fourier transform Kw(q) ∼ q2,
large q modes with short wavelength should decay quickly
while small q modes with long wavelength should decay
slowly. Slow decay has been seen by Francoual et al using
x-ray photo-correlation spectroscopy [15, 16]. They find a q2

dependence of the decay, as well as decay times of the order of
several tens of seconds. Dislocation motion in quasicrystals is
regulated by phason motion. Feuerbacher and Caillard [17]
have reported relaxation results using transmission electron
microscopy. They find decay times of fringe patterns due to
moving dislocations of the order of 1000 s. Extensive studies
have also been presented of diffuse scattering of neutrons and
synchrotron radiation (for example, see [18–21]), with similar
results for a q2 dependence. This has also been interpreted
as being due to long wavelength phason dynamics. However,
it has also recently been shown that these properties (q2

dependence of satellite peaks, slow relaxation) can also be
obtained in a model not invoking coherent long range phasons,
but just local atomic displacements following the icosahedral
symmetry [22].

In the present work we focus on local atomic jumps.
For short wavelength fast phason modes as well as phason-
like local atomic dynamics, a more local model respecting
icosahedral symmetry rather than coherent phason modes is
helpful. This is the case of the Penrose tiling where a phason
can be described as a local tile rearrangement. Here we will
denote such rearrangements as tiling flips. (In the literature
differing phason nomenclature has led to some confusion:
see [12, 23] for discussions.)

Atomic jumps can be detected through a measurement
of the dynamical structure factor S( �Q, ω) with �Q the
scattering wavevector and h̄ω the energy transfer. They
lead to a quasielastic (QE) scattering centred at zero energy

transfer [24–26], the characteristics of which give information
on the jump timescale and range. Of course all atomic
jumps are not related to tiling flips. Indeed a description
of local degrees of freedom in terms of phasons is relevant
when a quasiperiodic or perpendicular space description is
necessary [12]. A clear counterexample can be found in
the work of Vogl and co-workers [27–29] who observed
fast atomic jumps in some crystalline systems in which one
atom is connected to a cage of nearby possible sites. This
kind of motion is sometimes denoted cage diffusion in the
literature. It should not be confused with the long ranged
diffusion processes which also involve atomic jumps. Note
that the characteristics of the QE signal allow us in principle to
distinguish between cage and long ranged diffusion. Examples
have been given, for instance, in [27–29].

There have been extensive studies of dynamical properties
in i-AlCuFe and i-AlPdMn QCs by QE neutron scatter-
ing [30–33]. The dependence of the dynamical structure factor
on the �Q direction could be studied in single crystals of i-
AlPdMn QC [33]. In the isostructural system i-AlCuFe, only
S(Q, ω) (with Q = | �Q|) could be investigated due to the
lack of large enough single crystals. However, in i-AlCuFe
it is possible to use isotopic substitution (Cu and Fe) [30, 32]
as well as the Mössbauer effect on Fe [34–36]. This yields
atomic-specific information on the dynamics. A summary of
previous studies in i-AlCuFe is given below.

One Cu jump was first observed for temperatures T �
723 K in time-of-flight neutron scattering experiments [30]
through the detection of a QE line with a temperature-
independent full width at half-maximum (FWHM) �QE =
110 μeV. This corresponds to a timescale τ = 12 ps.
Following [32] and ignoring model-dependent numerical
factors, τ is estimated here as 2h̄/�QE. (Note that [30–33]
as well as [36] report the half-width at half-maximum for all
detected QE lines.) This timescale must be understood as an
average residence time between jumps. The length scale of
this Cu jump, from the Q dependence, is 4 Å. Another Cu
jump with �QE = 500 μeV, and hence τ = 2.6 ps, and a
length scale smaller than 1.9 Å was detected above 900 K [32].
The temperature dependence of these two Cu jumps was
found to be very unusual, with an almost constant timescale
but a temperature-dependent Arrhenius-like amplitude. This
is contrary to the usual result where the timescale changes
strongly with temperature. Thus it seems from this result that
the detected copper jumps are very fast and at least not strongly
temperature-dependent, but that the possibility of jumping is
regulated by a second process (for example, a neighbouring
atom) [32]. A much wider QE contribution (�QE ∼ 1800 μeV)
ascribed to all atomic species was also found at 1043 K [32].
Finally the existence of another jump was detected at 1043 K
in neutron backscattering experiments [32]. Its energy scale
is of 4 μeV, i.e. its timescale (330 ps) is much longer than
the previous ones. Using isotopic substitution, it was observed
that the QE intensity did not change with the scattering cross
section of copper, so that Cu is not involved in this latter
process. However, its atomic nature (Al, Fe or both) remained
uncertain. Using high velocity 57Fe Mössbauer spectroscopy,
Coddens et al [36] were able to detect a broad QE line
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on an energy scale of about 4 μeV at 1060 K. This is
an unambiguous signature of iron jumps. However, neither
their temperature dependence nor their possible relationship
with the low energy jump detected in neutron backscattering
experiments were studied. This vast difference in timescales,
of about two orders of magnitude, in the copper and iron jumps
in the same QC structure has remained a puzzle. In this study
we present both low and high velocity Mössbauer spectroscopy
(MS) as well as neutron scattering (NS) results on the i-AlCuFe
phase. Our goal is to investigate the iron dynamics in this QC.

Another objective of the present work was to compare
the dynamics in QCs and in periodic phases, both simple
phases and approximants, in order to clarify the role of local
environments and quasiperiodicity. This is an important point,
which has received only little attention in the literature so far.
Approximants are crystalline phases with unusually large unit
cells. Their structural properties, such as local order, approach
those of the QC when p/q , which designates the order of the
approximant, approaches the golden mean. Long wavelength
coherent phason modes are not expected in approximants since
strict quasiperiodic order is necessary for such modes. This
has been demonstrated by a study of the ZnMgSc QC and
its ZnMg 1/1 approximant [37] by x-ray diffuse scattering.
Phason modes could only be observed in the QC but not
in the 1/1 approximant, consistent with the hydrodynamical
theory. However, local processes are not at all ruled out
by this requirement and in fact can be expected to exist in
approximants given their similar local nature. The AlCuFe
system is especially well suited for such a study. Both
approximants and simple crystalline phases with compositions
close to those of the QC phase [38–40] exist. Hence we could
compare by MS the Fe dynamics in the i-AlCuFe QC to that in
two cubic 1/1 approximants (denoted α and α′) as well as in a
conventional cubic B2 phase.

In conventional (low Doppler velocity) Mössbauer
spectroscopy, indirect information on atomic jumps can be
gained from the temperature dependence of the central elastic
line, giving the Lamb–Mössbauer (L–M) recoilless fraction
f (T ). As discussed in the appendix, phonons lead to a linear
decrease in ln f (T ) at high temperatures which in the Debye
model depends on the Debye temperature. Additional modes
of atomic motion lead to a further decrease in ln f (T ) as
soon as their energy range exceeds that of the elastic line.
High temperature Mössbauer studies of i-AlCuFe have been
presented by Janot et al [34] and de Araújo et al [35]. In both
cases, an anomalous decrease in ln f (T ) is reported at high
temperature but not compared to models. Here we analyse
the temperature dependence of ln f (T ) by comparing it with
the expected behaviour for phonons and by correlating it to
the temperature dependence of the QE line detected in high
Doppler velocity MS. A study of the temperature dependence
of the quadrupole splitting of the 57Fe Mössbauer resonance,
measuring the electric field gradient (EFG), is presented as
well. The effective EFG in the dynamical limit is sensitive
to changes in orientation of the principal EFG tensor axes
occurring, for example, for certain jumps lacking mirror
symmetry. It can then be used to detect properties of such
jumps.

2. Samples and experiments

2.1. Samples

All the samples were prepared by planar flow casting methods,
as described for instance in [38]. After annealing they were all
shown to be single phase by x-ray diffraction. Below is a list
of the samples used in this study.

(i) Quasicrystalline i-Al62Cu25.5Fe12.5 (annealed 2 h at
1070 K) denoted i-AlCuFe. For this composition, the i-
phase is known to be stable up to 1100 K. Two different
samples were studied, one containing natural Fe and the
other containing 100% 57Fe. These samples were the same
ones used in the inelastic x-ray and neutron experiments
reported in [41, 42].

(ii) Cubic 1/1 approximants. Substitution of a few per cent
of Si for Al leads to the formation of two different low
order cubic 1/1 approximants, in distinct composition
regions [40]. The first one, denoted α, exists for Cu
and Fe concentrations similar to those in QCs and higher-
order approximants. The second one, denoted α′, is found
in a very different concentration domain, for a fixed Fe
content (17.5 at.%) and a small amount of Cu (around
4 at.%). The samples studied are α-Al55Si7Cu25.5Fe12.5

(annealed 24 h at 920 K) denoted α-AlSiCuFe and α′-
Al76.7Si7Cu3.8Fe17.5 (annealed 72 h at 870 K) denoted α′-
AlSiCuFe. These samples were the same ones used in the
EXAFS experiments reported in [43]. They both have a
large cubic cell parameter, close to 12.4 Å, and about 138
atoms per unit cell.

(iii) Cubic non-approximant B2-type phase (cubic CsCl
structure) β-Al52Cu35Fe13 (annealed 18 h at 1170 K)
denoted β-AlCuFe [44]. Its cubic cell parameter is
equal to 2.9 Å. For this composition, Al occupies
one crystallographic site and Cu and Fe are randomly
distributed on the other.

2.2. Mössbauer experiments

High temperature Mössbauer experiments have been made
on all samples given in the above list in a Doppler velocity
range of about ±2 mm s−1 corresponding to ±0.096 μeV
(14.4 keV gamma ray). The spectrometer resolution is equal
to ∼0.24 mm s−1 (FWHM) which is the sum of �0, the
natural (FWHM) width of the 57Fe nuclear transition, and of
instrumental effects including defects in the drive, etc. �0 is
the sum of the source and absorber FWHM ideal widths, each
equal to 0.097 mm s−1 corresponding to an energy uncertainty
of �E = 4.6 neV. A simple oven fitted with Mylar windows
was used with a dynamic vacuum of about 10−6 Torr. The
maximum temperature used was 1070 K for i-AlCuFe, 975 K
for β-AlCuFe and only 850 K for the 1/1 approximant phases,
which are not as stable as the i-AlCuFe.

In order to search for quasielastic effects, Mössbauer
experiments were performed on the 57Fe-enriched i-AlCuFe
phase, in the temperature range (300, 1070 K), over a
much wider range of Doppler velocities ±100 mm s−1

(corresponding to ±4.8 μeV). The use of an enriched sample
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is necessary to improve the contrast between the non-resonant
flat background and any broad quasielastic signal centred on
zero energy shift.

For making the Mössbauer absorbers, the ribbons were
ground into a powder and mixed with a small amount of
high purity BN powder or pressed into BN wafers to better
distribute the grains in the oven sample holder. This consists
of two BeO wafers pressed together in a tantalum clamp.
For each natural Fe sample, the absorber contained about
5 mg cm−2 of alloy powder. Thus the Mössbauer absorption
thickness parameter [45] tab was less than one for the natural
Fe sample. In order to detect a quasielastic signal in high
velocity Mössbauer experiments, much larger values of tab are
required although values larger than unity lead to nonlinear
absorption [45], deforming the spectrum lineshape in the
central (high absorption) region. The absorbers were made
with about 20 mg cm−2 alloy powder, so that tab was about
50.

Although the i-phase is stable up to 1100 K, the
precipitation of a small amount of the β-phase is possible
above 1020 K when the sample holder is not made of alumina,
which is the case here. In addition, slow oxidation of the
sample would remove Al from the QC matrix, and also
cause some precipitation of the β-phase. In all experiments
on i-AlCuFe phases, the samples were checked before and
after with room temperature Mössbauer spectra and x-ray
diffraction. No detectable amount of β-phase was found.
Hence one can firmly assert that no structural evolution of the
i-phase occurred in these experiments and that the anomalous
temperature dependences reported in the next section are
intrinsic properties of the i-phase.

2.3. Neutron scattering experiments

Experiments were performed at 600 and 1050 K on the natural
Fe and 57Fe-enriched i-AlCuFe samples on the high-resolution
backscattering instrument IN16 [46] at the Institute Laue-
Langevin (Grenoble, France). This instrument has an energy
resolution (FWHM) of 0.9 μeV at an incident neutron energy
of 2.08 meV. The accessible energy range is ±15 μeV and the
scattering wavevector Q ranges from 0.02 to 1.9 Å

−1
. Typical

counting times, for one sample at a given temperature, were
one day. It was necessary to mask off part of the analyser
surface where strong (elastic) Bragg reflection occurred. For
these studies, the samples were mounted in hollow cylindrical
sample holders made of thin Ta sheets welded to stainless steel
flanges. An oven with a dynamic vacuum of about 10−7 Torr
was used.

3. Results

3.1. Low velocity Mössbauer results

3.1.1. Data analysis. Typical Mössbauer spectra from the
samples studied here are shown in figure 1. These are from
natural Fe i-AlCuFe but certain general remarks are in order
for all the samples. For each spectrum, the area below the flat
background level is a measure of the L–M recoilless fraction
f (T ). The centroid of the spectrum defines the average centre

m

Figure 1. Temperature evolution of the Mössbauer spectra of the
natural Fe i-Al62Cu25.5Fe12.5. Notice the scale at the top giving the
energy shift in μeV as compared to the Doppler velocity given at the
bottom in mm s−1. The relative absorption scale, given only for the
spectrum at 1000 K, is identical for all spectra.

shift. The Mössbauer spectra in figure 1 is a broadened
doublet. The line separation results from the partial lifting
of the degeneracy of the nuclear excited state I = 3/2 due
to the interaction between the nuclear quadrupole moment
and the electric field gradient (EFG) [45]. The broadening
of each line above the spectrometer resolution is due to the
overlapping of the contributions of many different local atomic
and chemical environments with differing centre shift δ and
quadrupole splitting �. Analysis of the room temperature
spectra shows that the two lines have equal area, as expected
from a random powder sample. The observed slight asymmetry
of the spectral widths can be explained by a correlation in the
variation in the centre shift δ and quadrupole splitting �, as we
discussed before [47], and seen by others as well [48, 49].

The spectra were fitted using the method discussed in [47].
The distributions of the centre shift δ and quadrupole splitting
� have been approximated using a Gaussian form. The
hyperfine parameters deduced from the fits are the average
centre shift 〈δ〉 (always reported referenced to bcc Fe at
room temperature), the average quadrupole splitting 〈�〉, the
measured linewidth � (FWHM) and the total resonant area
a which is proportional to the L–M recoilless fraction f (T )

(see the appendix). When only phonons are present, the
temperature dependence of 〈δ〉(T ) and f (T ) can be obtained

4



J. Phys.: Condens. Matter 21 (2009) 045405 R A Brand et al

Figure 2. Mössbauer parameters of the natural Fe i-Al62Cu25.5Fe12.5

in the temperature range (4.2, 1070 K). (a) The linewidth �
(FWHM) including a linear fit. (b) The average centre shift 〈δ〉
including a fit using the Debye model.

(see the appendix) from the Fe partial vibrational density
of states (DOS) gFe(ω). The latter can be taken from
measurements or from a Debye model.

3.1.2. Natural iron i-Al62Cu25.5 Fe12.5. The linewidth �

decreases slightly with temperature: figure 2(a) with a roughly
linear evolution. The average centre shift 〈δ〉 is shown as the
solid points in figure 2(b). A simple Debye model (see the
appendix), given as the solid line in figure 2(b), adequately
fits the data over the whole investigated temperature range
(4.2, 1070 K). The Debye temperature is found equal to
580 ± 6 K. The small error bar is actually artificial: only the
low temperature curvature contributes to the fit to 	D. The
most important information deduced from this fit is that the
sample did not degrade and no crystallographic phase change
occurred on heating in the Mössbauer experiments, confirming
the results of section 2.2. In the case of a phase change
in the sample there would be a shift in 〈δ〉 at the transition
temperature reflecting changes in the chemical isomer shift
〈δ0〉. The differences are large enough to be distinguished.
In [50] we published room temperature values for 〈δ〉 and 〈�〉
for this QC phase as well as the surrounding non-QC phases in
the Al–Cu–Fe phase diagram.

The temperature dependence of f (T ) is shown as the solid
points in figure 3(a) on a log scale. As shown in the appendix
(see equations (A.1) and (A.5)), in the harmonic (phonon)
approximation, the high temperature limit of the logarithm of
f (T ) is always linear and extrapolates back to f (0) = 1.

0

Figure 3. Mössbauer parameters of the natural Fe i-Al62Cu25.5Fe12.5

in the temperature range (4.2, 1070 K). (a) The L–M recoilless
fraction f (T ) on a log scale. The solid line is a fit to the Debye
model in the range (4.2, 550 K). Above 550 K, marked by an arrow,
there is a change in slope of the measured logarithm of f (T ).
(b) Average quadrupole splitting 〈�〉 as a function of T 3/2. The solid
line is a linear in T 3/2 fit to the data up to 800 K. At this temperature,
shown by the rightmost arrow, there is a change in measured slope.
An arrow is also given at 550 K. In (a) and (b), the dotted line at high
T is only a guide for the eye.

This property has been used here to normalize the measured
recoilless area a(T ) to obtain the recoilless fraction f (T ) using
a(T ) below the anomalous break in slope (discussed below).
The same normalization was found by fitting with a Debye
model (below).

Below about 550 K temperature and down to 4.2 K the
results could be fitted with a Debye model (see the appendix)
shown as a solid line in figure 3(a). The obtained Debye
temperature, denoted 	D, is equal to 550 ± 50 K. In addition,
we can also independently calculate f (T ) using the measured
Fe partial vibrational DOS gFe(ω) which we published
previously [41, 42]. This yields results indistinguishable from
the Debye result, even though the measured iron partial gFe(ω)

does deviate from the Debye model although less so than the
copper partial or aluminium partial vibrational DOS [51, 52].
We see from equations (A.1)–(A.3) that g(ω) is the integration
kernel for f (T ), so that most of the fine structure of gFe(ω) has
little effect on f (T ).

However, there is an abrupt change in slope of the
experimental logarithm of f (T ) near 550 K. Above this
temperature, the measured L–M recoilless fraction is smaller
than the predictions based on phonons. This deviation
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Figure 4. Mössbauer parameters of the 1/1 approximants
α-Al55Si7Cu25.5Fe12.5 and α′-Al76.7Si7Cu3.8Fe17.5 in the temperature
range (4.2, 850 K). (a) The L–M recoilless fraction f (T ) on a log
scale. The solid and dotted lines are the same as in figure 3(a) for the
i-AlCuFe sample. Both cubic phases display the same anomaly at
about 550 K, but weaker than the i-phase. (b) The average
quadrupole splitting 〈�〉 as a function of T 3/2. The solid line is the
same as in figure 3(b) for the i-AlCuFe sample.

increases with increasing T . The dotted line for the high
temperature region and the arrow at 550 K in figure 3(a) are
only guides for the eye and the line will be used to compare
results on other samples. The missing recoilless fraction
will be shown below in section 3.2 to be associated with the
presence of a broad quasielastic component (and thus counted
here in the background counting rate).

〈�〉 is given in figure 3(b). From 4.2 K up to 800 K,
〈�〉 decreases with temperature, obeying roughly 〈�〉(T ) =
〈�0〉 (1 − BT 3/2), with 〈�0〉 = 0.39mm s−1 and B =
10−5 K−3/2. This behaviour is found in almost all non-cubic
metals, with similar B values [53–55]. Stadnik et al [48, 49]
also found this dependence in several QCs and approximants
studied between 4.2 and 473 K.

Since this ‘usual’ dependence is not the subject addressed
here, this will not be further discussed and the T 3/2 power law
will be taken as the expected behaviour at all temperatures, as
will be confirmed on the B2 phase presented in section 3.1.4.
For the QC i-AlCuFe phase (figure 3(b)), this is no longer
found for temperatures above about 800 K, the average 〈�〉
decreasing much faster than expected. The dotted line in
figure 3(b) is a guide for the eye and represents the high T
behaviour. What is important is that this deviation from T 3/2

occurs at a temperature definitely above that of the anomaly in
f (T ) which is at about 550 K.

0

Figure 5. Mössbauer parameters of the 1/1 approximants
α-Al55Si7Cu25.5Fe12.5 and α′-Al76.7Si7Cu3.8Fe17.5 as well as the
β-Al52Cu35Fe13 phase. (a) The linewidth � (FWHM). (b) The
average centre shift 〈δ〉. The solid lines are the same as in
figures 2(a) and (b) for i-AlCuFe.

3.1.3. Cubic 1/1 approximants α-Al55Si7Cu25.5 Fe12.5 and
α′-Al76.7Si7Cu3.8 Fe17.5. Figure 4(a) shows the recoilless
fraction f (T ) (again, on a log scale) up to 850 K for the
two 1/1 samples compared to the results for the i-phase.
The solid curve is the Debye fit from the i-AlCuFe phase.
The data for α-Al55Si7Cu25.5Fe12.5 and α′-Al76.7Si7Cu3.8Fe17.5

were normalized to this curve in the range (4.2, 550 K) by
shifting. This well accounts for the temperature dependence of
f (T ) in the two 1/1 approximants up to about 550 K, which
indicates similar Debye temperatures in the 1/1 phases and
in the i-phase. Above 550 K, for the two 1/1 samples, the
measured f (T ) value is smaller than the extrapolation of the
Debye fit. This effect is qualitatively the same as that observed
in the i-phase but the amplitude of the deviations is slightly
reduced in the 1/1 approximants.

In figure 4(b) the results for 〈�〉 are shown, again
compared with those for the i-phase given as a solid line.
In these cubic phases, 〈�〉 is smaller and shows a weaker
temperature dependence in agreement with the results of [48]
between 4.2 and 473 K. In figure 5 the results for � in (a)
and for 〈δ〉 in (b) are shown, again compared to the i-AlCuFe
results shown as solid lines, the same as in figure 3. As for
〈�〉, � is smaller and less temperature-dependent than for the
i-phase. Note that the restricted temperature range imposed
by the lack of stability of the 1/1 approximants above 850 K
did not allow us to look for the existence of an anomaly in the
temperature dependence of the average EFG splitting such as
that found in the i-AlCuFe.
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Figure 6. Mössbauer parameters of the β-Al52Cu35Fe13 phase from
room temperature up to 975 K. (a) The L–M recoilless fraction f (T )
on a log scale. The solid and dotted lines are the same as in
figure 3(a) for i-AlCuFe. (b) The average quadrupole splitting 〈�〉 as
a function of T 3/2. Here again the solid and dotted lines are the same
as figure 3(b) for i-AlCuFe. The dashed–dotted line is a linear fit to
T 3/2 of the data for the β-phase.

3.1.4. β-Al52Cu35Fe13. The temperature dependence of f (T )

in the B2-type β-phase is compared to the results from the i-
phase in figure 6(a) where again we show the i-phase simply
as the solid and dotted lines. It is apparent that for the β-
phase there is no anomaly in f (T ). In fact, f (T ) follows
the Debye model of the i-phase with about the same Debye
temperature up to 975 K, the maximum temperature of this
study. Figure 6(b) shows the results for 〈�〉. The ‘usual’ T 3/2

behaviour is observed up to 975 K. Hence the anomaly detected
in the i-phase results above 800 K does not occur in the β-
phase. The line broadening � is found to increase slightly
with T rather than decrease, as was the case for the i-phase
sample: see figure 5(a). The centre shift 〈δ〉 for β compared to
the Debye fit to the i-phase is shown in figure 5(b). The shift
seen between the i - and β-phase is due to the difference in the
average chemical isomer shift between these two phases.

3.2. High velocity Mössbauer results on the 57 Fe-enriched
i-Al62Cu25.5 Fe12.5

We now return to the i-phase. In order to investigate the origin
of the loss of recoilless fraction observed in the natural Fe
sample, we performed a series of Mössbauer experiments on
several 57Fe-enriched i-AlCuFe absorbers, using a much wider
range of Doppler velocities (±100 mm s−1). Figure 7 shows a
series of spectra taken at increasing temperatures. Note that, at

Figure 7. Mössbauer spectra for the 57Fe-enriched i-Al62Cu25.5Fe12.5

sample taken at high Doppler velocities for several temperatures
from 293 K up to 1063 K. The dotted lines give the elastic
contribution and the dashed lines (at 773 K and above) the
quasielastic one, their sum (fit) being shown as solid lines. Notice the
scale at the top giving the energy shift in μeV as compared to the
Doppler velocity given at the bottom in mm s−1.

these Doppler velocities, the central elastic part of the spectrum
(contained in ±1 mm s−1: see figure 1) is reduced to a very
sharp line. As in the low Doppler velocity Mössbauer spectra,
the data are normalized to the background counts. We show in
the figure a highly expanded scale of the relative counts. The
wings of the elastic line (evaluated as explained below) are
shown as the dotted line. At 773 K and above, an additional
broad contribution is clearly observed. This is shown in the
figure as the dashed quasielastic line. Here we describe how
we extract this QE signal.

The subspectra labelled elastic in figure 7 have been
deduced from spectra measured at the same T at low Doppler
velocity (±2 mm s−1) on the same absorber. The high velocity
spectra were fitted by adding a Lorentzian quasielastic line
to this elastic subspectrum. The fitted parameters were the
intensity of the elastic component, the area AQE and the width
�QE (FWHM above the natural width) of the QE component.
In view of the broad width of the QE signal, no quadrupolar
splitting has to be introduced for this component. Note that the
inelastic scattering due to phonons is spread out over a much
wider energy range than investigated in these high velocity
experiments and simply adds to the flat background.

AQE and �QE are shown in figure 8. Both increase
with increasing temperature. At 1063 K, �QE equals
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Figure 8. Parameters of the quasielastic component of the Mössbauer
spectra for the 57Fe enriched i-Al62Cu25.5Fe12.5 as a function of
temperature up to 1063 K. (a) The area AQE(T ). (b) The linewidth
�QE(T ) (FWHM). The right-hand scale gives the equivalent energy.
The solid lines in (a) and (b) are only guides for the eye.

56 ± 10 mm s−1, i.e. 2.7 ± 0.5 μeV. This value is not far from
that reported (4 μeV FWHM) in [36] at 1060 K for data with
a lower signal-to-noise ratio on a similar i-AlCuFe sample.

In conclusion, the appearance of the quasielastic
component and its increase in intensity with increasing
temperature up to 1063 K are clearly correlated with the
anomalous decrease in f (T ) above 550 K reported in
section 3.1.2 for the natural Fe i-AlCuFe sample. In the low
velocity spectra the quasielastic component merges into the
energy-independent background counting rate. The area of the
elastic and quasielastic components should obey a sum rule,
their sum being the value of f (T ) predicted from the phonon
spectrum. However, the strong nonlinear absorption in the
enriched samples precludes a rigorous test of this expectation.
Nevertheless qualitative arguments can be given.

Let us first note that near 1000 K the QE line is about a
factor of 100 times broader than the elastic one. Then, for equal
areas (intensity) it would be 100 times less deep. This makes a
strong QE signal appear to be very weak. As explained above,
in order to measure the QE contribution we have used samples
enriched in 57Fe, and a large velocity range.

This creates difficulties in analysing simultaneously the
QE signal and the narrow elastic part of the spectrum. A
rigorous test of the sum rule between the elastic and the
quasielastic contributions would entail a fit of both components
in one spectrum, and then a calibration (converting measured
area in mm s−1 to recoilless fraction f for both contributions).
In the case of a large Mössbauer thickness parameter tab, this

should entail using the proper transmission integral to properly
account for spectral distortion of mainly the central, elastic,
component. This is made difficult by the large velocity interval
pro channel as compared to the variation in absorption pro
channel at the centre (leading to averaging effects), rendering
the transmission integral fit unstable.

3.3. Neutron scattering results on the natural iron and
57 Fe-enriched i-Al62Cu25.5 Fe12.5

Neutron spectra were measured at 600 and 1050 K. The raw
data were first corrected for detector efficiency, sample mass,
absorption and removal of the sample holder contribution in
order to obtain the scattered intensity as a function of the
neutron energy transfer �E = h̄ω. Spectra can be produced
either by summing over all detectors, or by grouping them in
groups of two. The latter are proportional to the scattering
function S(Q, h̄ω). Data in the high-Q range were affected by
strong Bragg reflections (whose intensities changed between
the two samples). The affected detectors were not used in the
further analysis of either sample. In addition, the total intensity
at the first two detectors was anomalously high, so the lowest-
Q region was also deleted (0.02–0.28 Å

−1
). Therefore we

report only on data with Q values of 0.49, 0.71, 0.92, 1.11,
1.29, 1.46 and 1.66 Å

−1
.

The phonon inelastic scattering is spread out over a range
of several meV and thus appears as a flat background in our
energy range (±15 μeV). Hence, to analyse the spectra we
use a model which is the sum of a constant background, a
delta function (accounting for the elastic contribution) and
an eventual quasielastic (QE) contribution assumed to be a
single Lorentzian. Then the model is convoluted with the
experimental resolution function.

The 600 K spectra summed over all Q values could be
satisfactorily explained for both samples by the sum of the
elastic contribution and a flat background. Hence no QE signal
could be detected at 600 K. The analysis of the 1050 K spectra
also summed over all Q for the natural Fe i-AlCuFe sample
reveals the presence of an additional small QE signal. The
QE signal being much smaller than the elastic contribution,
its accurate separation from the wings of the elastic peak,
enlarged by the finite resolution, is difficult. Hence we have
analysed our data using a difference method, along similar
lines as Coddens et al [32]. Difference spectra were built by
subtracting the spectrum at 600 K from that for 1050 K at
each Q value. The elastic intensity decreases with increasing
temperature due to atomic vibrations. At 1050 K, atomic
jumps will contribute to an additional decrease of the elastic
contribution, as is the case for the L–M recoilless fraction
in Mössbauer experiments. Therefore the elastic contribution
will always appear negative in the difference spectra. Any
quasielastic contribution, present at 1050 K and negligible or
absent at 600 K, will appear positive. Note that the validity
of this treatment depends on the separability of the elastic
and quasielastic terms and assumes that the elastic component
remains sharp (resolution-limited). It would not apply to a
situation where the entire elastic peak becomes quasielastic
at high temperature, as is the case when diffusion of all the
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Figure 9. Neutron spectra summed over all Q values from 0.49 to 1.66 Å
−1

(a) for the natural Fe i-AlCuFe phase and (b) for the
57Fe-enriched one. Shown is the difference spectrum from that at 1050 K minus that at 600 K. The dashed–dotted (negative-going) line
accounts for the elastic component. The positive-going dashed–double-dotted line represents the quasielastic contribution. The solid line is
the sum of these. Note the difference in scales in (a) and (b).

chemical species present in the material occurs [24]. The
resulting difference spectra (summed over all Q values) are
shown in figure 9(a) for the natural Fe and in (b) for the 57Fe-
enriched samples. As expected, they exhibit a strong negative-
going central region, due to the elastic contribution.

Let us first analyse the natural Fe sample. A broader
positive-going signal, centred at zero energy, is clearly visible
in figure 9(a), revealing the existence of a QE component.
The difference spectrum was fitted including a (Lorentzian)
quasielastic signal. The width of the QE line (FWHM) is 1.5±
1 μeV, smaller than the value reported by Coddens et al of
4 ± 1 μeV in [32]. This difference probably comes from slight
differences in modelling the resolution function, which affect
the separation between the wings of the elastic contribution
and the QE signal. This analysis confirms unambiguously the
existence of a quasielastic signal in the natural Fe i-AlCuFe
at 1050 K. Its Q dependence could not be studied because the
spectra at fixed Q did not have a sufficient signal-to-noise ratio.

For the 57Fe-enriched i-AlCuFe sample, the difference
spectrum is presented in figure 9(b). It is apparent that any
quasielastic contribution is much smaller than for the natural Fe
sample. Fixing the width of the QE signal in the 57Fe-enriched
sample to the value found in the natural Fe sample, the ratio of
the area between the 57Fe-enriched and natural Fe was found
to be about 0.2. From the work of [32] we already know that
the intensity of the quasielastic component is insensitive to the
Cu scattering cross section. From the composition-weighted
scattering cross sections [56] presented in table 1, we see that
the ratio of the Al + Fe cross sections is 0.44, while the ratio
of the 57Fe to natural Fe cross section is about 0.086. We can
therefore conclude that, although Al contributes, Fe dynamics
is the dominating contribution to the QE line detected in NS.
This conclusion is coherent with the fact that the QE lines
detected in high velocity MS and in NS have similar linewidths.

Table 1. Composition-weighted neutron scattering (coherent plus
incoherent [56]) cross sections in barns for each element in the two
i-Al62Cu25.5Fe12.5 samples. The total scattering cross section σs is
given in the last column.

Fe σ Al
s σ Cu

s σ Fe
s σs

Natural 0.931(2) 2.048(8) 1.452(12) 4.27
57Fe 0.931(2) 2.048(8) 0.125(37) 2.99

4. Discussion

4.1. Summary of literature results

In addition to previous diffuse scattering and neutron time-
of-flight and quasielastic scattering results, there is other
clear evidence that the atomic dynamics in QCs of the i-
AlPdMn family is anomalous at high temperatures. Edagawa
et al [57, 58] and Shulyatev et al [59] have presented high
temperature specific heat data on several such QCs and shown
that they deviate very strongly from the Dulong–Petit law
3 kB/atom. For i-AlPdMn the specific heat increases above
3 kB for temperatures above 700 K and reaches 4.7 kB at
1080 K. In contrast, the deviation of a crystal approximant
Al-Pd-Fe is much smaller, it is about 3.6 kB at 1080 K.
Edagawa et al discuss the origin of the large deviations of the
quasicrystals from Dulong–Petit’s value in light of the thermal
excitation of phasons. Shulyatev et al present similar data for
i-AlCuFe and decagonal d-AlNiCo.

Previous studies of the L–M recoilless fraction f (T ) have
been presented by Janot et al [34] for i-Al62Cu25.5Fe12.5 and
de Araújo et al [35] for i-Al63.5Cu24Fe12.5 from 293 K up to
1076 K. These f (T ) data, shifted on a logarithmic scale so
that the linear part from 300 to about 550 K extrapolates to
f = 1 at zero temperature (see the appendix), are compared
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to our results in figure 10(a), shown as the solid and dotted
lines. A good superposition is obtained. The Debye fit with
	D = 550 K, found for our sample in section 3.1.2, accounts
well for the behaviour of the two other samples in the range
(300, 550 K), indicating similar Debye temperatures in the
three samples, as expected from their similar compositions.
Above 550 K, in all samples, the L–M fraction is smaller than
expected from the Debye model.

To our knowledge an anomaly in the temperature
dependence of the average quadrupole splitting has not been
mentioned in the literature so far. However, de Araújo et al
[35] gave data for the average quadrupole splitting 〈�〉 as a
function of T in the range (293, 1076 K). In figure 10(b)
we report their data as a function of T 3/2, compared to ours.
Note that in [35] 〈�〉 was evaluated using a distribution
algorithm, which weights the higher splittings more than our
single enlarged doublet model does, so the results obtained
for 〈�〉 are consistently about 10% larger than ours. But a
comparison in temperature is all we are interested in here.
A T 3/2 law accounts for the data of de Araújo et al up to
about 800 K. Above this, there might be a change in slope,
and if we delete their data point at 1024 K then we indeed
obtain a slope compatible with the one observed in our sample.
Note that de Araújo et al gave another analysis of their
results, concentrating on their two high temperature points and
proposing a structural transition to a perfect QC phase above
1000 K. From this comparison of all available low velocity
Mössbauer results, we can conclude that all i-AlCuFe samples
exhibit the same behaviour, although some of the effects had
remained unnoticed in the literature.

In the two 1/1 approximants studied here, a loss in f (T )

occurs above 550 K, revealing the same kind of Fe dynamics
as in the i-phase but the effect is smaller. These results
should bring some hints for identifying the hopping sites in
the QC structure, taking advantage of the now well-known
chemical decoration of the 1/1 phases [43] and its link with
the i-phase [60]. For the B2 β-Al52Cu35Fe13 phase we have
established in the present work that no anomalous Fe dynamics
(other than phonons) occurs, contrary to the case of the i-phase
and approximant phases. Hence no Fe jumps are detected in
the B2 phase.

The only related study in the literature is that of Coddens
et al [32] who have presented some results on AlCuFe
approximants using QE neutron scattering. In the 100 μeV
energy range where Cu jumps are detected in i-AlCuFe, the
rhombohedral AlCuFe phase, a high order (p/q = 3/2)
approximant [40], behaves exactly like the i-phase. In addition,
no Cu jumps could be detected in the 1/1α-Al55Si7Cu25.5Fe12.5

phase at 953 K and in the B2-type β-Al50Cu25Fe25 phase at
1063 K in this energy range.

Dahlborg et al [61] have detected Cu and Ni jumps
with energy ranges close to those in QCs in a crystalline
Al50Cu35Ni15 phase at 1193 K and concluded that rapid
atomic jumps are likely to occur in any metallic alloy
at high temperature and are not a specific property of
quasicrystals. This statement has led to some controversy in
the literature [62, 63]. Clearly the present results show that
reality is much more complex. The Fe jumps observed in

0

Figure 10. Our data for f (T ) and 〈�〉 in i-AlCuFe compared to
literature results. (a) The recoilless fraction f (T ). The solid and
dotted lines are the same as in figure 3(a) for our i-Al62Cu25.5Fe12.5.
Shown as well are the literature data for the same composition
i-phase [34] and for i-Al63.5Cu24Fe12.5 [35]. (b) The average
quadrupole splitting 〈�〉 as a function of T 3/2. The solid line is a
T 3/2 fit to our data up to 800 K, shown by the upper arrow. Shown as
well are the literature data for i-Al63.5Cu24Fe12.5 [35]. The
dashed–double-dotted line is a fit to the data of [35] up to 800 K. The
dotted lines from figure 3 for (a) and (b) are only guides for the eye.

the QC do not exist in the B2 β-Al52Cu35Fe13 phase. We
will confine ourselves to a few comments. It is well known,
since the work of Vogl [27, 29, 64], that fast local hopping
is characteristic of some crystalline systems in which the
jumping atom is connected to a cage of nearby possible sites.
Hence certainly all hopping processes are not linked with
phasons in quasicrystals. It will be the case only if they are
related to a perpendicular space or amenable to a Penrose tile
description. This could indeed be the case in the Al50Cu35Ni15

phase studied in [61] since its B2-based structure (designated
in the literature as a tau-phase) is particular and exhibits a
quasiperiodic vacancy order [65].

4.2. Modelling results

In MS, as in NS, one actually measures the incoherent
dynamical structure factor Sinc( �Q, ω), related to the self-
correlation function Gs( �R, t) giving the probability to find an
atom at �R at time t which was at the origin at time zero.
For NS, the wavevector �Q varies whereas for MS it is the
wavevector of the Mössbauer radiation and thus fixed (Q =
7.29 Å

−1
for the 14.4 keV radiation of 57Fe).
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In the following we will only treat the case of MS but
the same conclusions could be applied to NS. For neutron
scattering, a problem arises that the incoherent neutron
cross section is actually much smaller than the coherent
one (see table 1). When the momentum transfer is large
enough, inelastic scattering is not sensitive to structural
correlations (which lead to diffraction) so that the incoherent
approximation [66–68] is applicable, where we treat the
scattering as if it were incoherent, but use the total scattering
cross section. This is what Coddens et al [30] found in i-
AlCuFe.

Considering atomic jumps in a restricted cage, a
separation into very fast thermal vibrations and slower jump
rates within the cage is usually possible. Petry and Vogl [28]
have given the solution for an octahedron cage (ignoring the
electric field gradient: see later). The contribution of localized
atomic jumps to the MS spectrum consists of a sum of different
QE Lorentz lines with FWHM of � j = �0 + 4 jγ j where �0 is
the natural linewidth of the nuclear transition. The index j runs
from 0 (centre position) over all allowed jump vectors �R j with
jumping rate 1/τ j given by γ j/h̄. The j = 0 term is the elastic
line (with unchanged linewidth �0) but intensity reduced by
the sum of all QE contributions. Thus, provided that 4γ j is
not negligible with respect to �0, the MS spectrum consists of
QE lines coexisting with an elastic one. In the limit of equal
partition over the states (high temperature limit) this leads to
a ‘jump Debye–Waller factor’ for the elastic line fJump given
by fJump = |(1/N)

∑
j exp(−i �Q · �R j )|2. As a last comment

we mention that the factor of four in the above depends on
the geometry of the model and different models give different
factors.

In summary, localized atomic jumps lead to the
coexistence of quasielastic and elastic contributions, the
intensities of which are related by a sum rule. The physical
reason is that, in the case of cage motion, the atom has a finite
probability to return back to its original position even at long
times.

The situation encountered in the case of the long ranged
motions involved in atomic diffusion is completely different.
The correlation between successive jumps is then much
smaller. As a consequence, the unbroadened line ( j = 0)
disappears and the MS (or NS) spectrum consists of a single
QE line (or perhaps a sum over QE lines). Its integrated
intensity follows the behaviour expected for thermal vibrations
and hence there is no anomaly in the measured f (T ). Its
width �QE (FWHM above the natural width) increases with
increasing temperature. It can be related to the residence time
as τ = 2h̄/�QE (to within a model-dependent factor) and
hence to the diffusion constant D using D = R2 F/6τ [69],
where R is the jump distance and F is the correlation factor:
the fraction of jumps not leading back to the original position.

In both the i-AlCuFe QC and the 1/1 cubic approximants,
we observe an elastic line which does not broaden at high
temperatures but shows a loss of recoilless fraction f above
about 550 K. In the i-phase, we could establish that this loss is
correlated with the appearance of a QE component. Although
the existence of a sum rule could not be quantitatively proven
(see section 3.2), one can note that the intensity of the QE line

and the difference between the calculated f value for thermal
vibrations and the measured one exhibit the same qualitative
temperature evolution in the temperature range (773, 1070 K),
where the QE line could be detected. They both steadily
increase with temperature.

Based on these observations it is reasonable to assume that
the QE line, although too weak to be detected below 773 K,
appears at about 550 K, which is the temperature at which
f exhibits its anomalous decrease. These results certainly
suggest that we are observing a type of cage motion for the
Fe atoms rather than diffusion. It is then consistent to interpret
these as phason flips on a quasiperiodic or approximant lattice.
In the following we will give a simple model of the Fe
atomic jumps as such tiling flips which do correspond to
experimental results, including the temperature dependence
of the quadrupole splitting. But before presenting this
interpretation, we consider two alternatives, namely diffusive
motion of the Fe, or localized shell vibrations.

One could propose the coexistence of two kinds of Fe
atoms, one only vibrating around equilibrium atomic positions
and responsible for the elastic component and the other one
diffusing and responsible for the QE line. Although it would
be difficult to explain why the proportion of diffusing Fe
atoms should increase with temperature in this model, let us
consider it further and try to interpret the width of the QE
line as resulting from long range diffusion. From the �QE

value measured at 1000 K (∼2 μeV) one can estimate the
residence time (of the order of 660 ps) and hence get an order of
magnitude for the diffusion constant D (∼10−11 m2 s−1) using
R = 2 Å and F = 0.78 (the value for an fcc lattice).

Although this calculation is not actually applicable (since
the atomic motion observed here is not random-walk-like
and we do not have an fcc lattice), it does permit a
direct comparison to the results of macroscopic diffusion
measurements. The latter are definitely smaller. Mehrer [70]
has summarized the current literature results. The values of D
found for transition metals in pure aluminium lie in the range
of 10−12 m2 s−1, and in single-crystal i-AlPdMn (isostructural
with i-AlCuFe) in the range of 10−16 to 10−13 m2 s−1 with
diffusion of Fe at the lower end of this range (values given
for 1000 K). Clearly the observed QE line is too large to be
ascribed to long range diffusion of Fe.

An additional and even stronger argument (not affected
by the arbitrary guess of an F value) comes from the
analysis of the temperature dependence of �QE. We can try
to analyse it assuming an activation law (Arrhenius form)
�QE(T ) = �∞ exp(−EA/kBT ). A satisfactory fit can be
obtained with an activation energy EA of 0.25 eV/atom but
this value for EA is an order of magnitude lower than that
obtained from the macroscopic diffusion measurements. This
means that, at temperatures lower than 1000 K, the difference
between measured D values and D values estimated from
the QE linewidth is even several orders of magnitude larger.
Unfortunately, only the two temperatures reported on for the
INS experiments were possible due to low counting statistics
(the QE neutron scattering experiments of Janot et al [34] were
with a fixed energy window of 1 μeV).

Another explanation of both the anomalous decrease in
the L–M recoilless fraction and neutron elastic scattering

11



J. Phys.: Condens. Matter 21 (2009) 045405 R A Brand et al

intensity has been proposed in [34] in terms of vibration modes
localized on clusters. It seems to us that this interpretation
can be discarded for several reasons. First of all, and most
importantly, localized vibrations cannot produce a QE line.
Other arguments are that, in the case of localized vibrations,
there is no energy barrier and so there should be deviations
from the behaviour predicted from phonons at all temperatures.
This was shown in the work of Maradudin et al [71] and
experimentally confirmed [72, 73]. Moreover local vibrations
should affect the T dependence of the Mössbauer second-order
Doppler shift, which is not the case in our work (figure 2(b)) as
well as in [35].

Thus the only reasonable interpretation of our results
is to assume that Fe atoms are undergoing localized jumps.
Then one has to explain why, from 550 to 800 K, Fe jumps
occur with no change in EFG splitting, while above 800 K
this splitting decreases strongly. There is also an increase
in spectra asymmetry (relative intensities between the two
lines) with increasing temperature (see an example in figure 1).
As an expositional example we will use the work of Litterst
et al [74, 75] who have calculated the Mössbauer spectrum for
Fe atoms hopping between the apices of an octahedron. In this
calculation, one assumes that the EFG tensors have the same
eigenvalues at each site. For simplicity, cylindrical symmetry
is assumed with the principal tensor axis parallel to the vector
joining the centre of the octahedron to the site. Two different
jumps are possible (figure 11(a)). An axial jump (length
2r ) between two opposite apices (characteristic timescale τ1)
preserves the orientation of the EFG principal axis system
since this jump occurs between mirror-related sites. A jump
(length

√
2r ) between two neighbouring apices (characteristic

timescale τ2) implies a rotation of the EFG principal axis. Both
kinds of jumps lead to a QE signal which is the signature for
cage motion.

For jumps between opposite apices no decrease of the
EFG splitting of the central line occurs but for jumps between
neighbouring apices, a decrease, and eventual collapse, at very
large τ2 in the effective EFG splitting is obtained, accompanied
by a growing asymmetry of the Mössbauer spectra. These
effects are driven by the dynamical mixing of the EFG-split
nuclear energy levels of the 57Fe excited state. Vogl and co-
workers have observed such effects for Fe implanted into α-Zr
and into Al [76, 27, 29, 64].

We emphasize here the important point that these model
results do not depend on the specific geometry of an
octahedron. The essence lies in the fluctuations of the
hyperfine interactions which may or may not be accompanied
by a rotation of the principal axis system of the EFG tensor.
The point of discussing this model is not to conclude that there
are octahedral Fe sites in the QC, but to establish the effect
of the rotation of the EFG principal axes on the apparent EFG
splitting during an atomic jump, which is model independent.

We therefore conclude that Fe is involved in at least
two different local atomic jump processes in i-AlCuFe and
that there are at least two different modes of tiling flips
(phasons) involving Fe in i-AlCuFe at high temperatures.
These two processes can be characterized as, first, a mirror-
symmetric tiling flip and, second, a rotational tiling flip

Figure 11. (a) A regular octahedral cage. The Mössbauer atom is
assumed to jump between the apices. Two different possible jumps
are shown with relaxation times τ1 (left) and τ2 (right). (b) The
possible types of atomic jumps shown as tile flips on a Penrose
quasiperiodic lattice: without (left) and with (right) rotation of the
local principal axis of the EFG.

(figure 11(b)). Note that the evidence for two different jumps is
the temperature dependence of the EFG. Note that the evidence
for two different jumps is the temperature dependence of the
EFG: a departure from the T 3/2 behaviour found below 500 K.

The two different jumps could not be distinguished in the
analysis of the QE line. Either they have similar characteristic
timescales and hence their QE contributions are mixed or the
jump starting above 800 K does not occur in the energy window
of the high velocity Mössbauer experiments.

A comment must be made on the T 3/2 behaviour of
the EFG. Our goal is not to discuss its origin in AlCuFe
phases. Indeed this behaviour, commonly observed in non-
cubic metals [53–55] and previously in some QCs [48, 49],
has no well-established theoretical basis. (It has been obtained
in hcp-Cd from first-principles calculations [77] and ascribed
to the influence of the electronic structure and vibrational DOS
on the EFG.) However, it can be used to show the change of
regime in the temperature dependence of the EFG at 800 K
which occurs in the i-AlCuFe phase but not in the B2 β-
Al52Cu35Fe13 phase.

5. Conclusions

We have demonstrated the existence of Fe localized jumps in
the i-AlCuFe QC and were able to clarify their temperature
dependence. Interpreting the temperature dependence of �QE

in this framework, one can conclude that Fe jumps obey
a thermal activation law, with an activation energy EA of
0.25 eV/atom. This is in strong contrast with the absence of
any T dependence observed for the Cu jumps detected so far
in i-AlCuFe [30, 32], as well as for atomic jumps observed
in i-AlPdMn [31] and in the decagonal d-AlCoNi phase [78].
Hence, whereas the thermal behaviour of the Cu jumps in i-
AlCuFe cannot be explained by simple thermal activation of
Cu atoms, that of Fe can be.

Despite this vast difference in residence times for Fe and
Cu, it is striking to note that for both jumps the intensity of
the QE line steadily increases with temperature. Cu jumps
are unambiguously observed at 723 K in [30] through the
detection of a QE line. It is possible that they start at a lower
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temperature but the QE line is then too weak to be detected.
In the present work, because of Lamb–Mössbauer recoilless
fraction data and their established correlation with the intensity
of the QE line, we have a very precise determination of the
temperature at which Fe jumps start to occur: 550 K. This
pinpoints the starting temperature for Fe jumps due to phasons
much better than previous studies and makes comparisons with
other experiments possible, as we will now discuss.

It is very interesting to compare our recoilless fraction
results with the specific heat data of Edagawa et al [79] on
i-AlPdMn and d-AlCuCo QCs. They observed an anomalous
increase of the constant volume specific heat Cv above 600 K.
reaching 5 kB/atom near 1000 K, far above the classic
3 kB/atom limit given by the harmonic approximation. Small
increases in Cv above 3 kB/atom near the melting point are
expected and usually observed, but the results of [79] are
difficult to explain simply on this basis. Something more
dramatic is needed, similar to local melting. However, their
results do not suggest a phase transition in the sense of a new
structure. A depinning of the (frozen) phasons above 600 K
is proposed in [79]. Our results are consistent with such an
interpretation.

As shown in section 4.2 it is consistent to interpret the
two kinds of Fe jumps detected in the i-AlCuFe QC as tiling
flips (phasons). However, one should emphasize that the
present results demonstrate that a quasiperiodic long range
order is not required to generate these local iron jumps. We
observed similar, although reduced, effects in the two cubic
1/1 approximants α and α′-AlSiCuFe. Significantly, no local
Fe jumps are detected in the simple cubic B2-type β-AlCuFe
phase. Hence the existence of local iron jumps must be linked
to local environments present, at least partly, both in QCs and
approximants.

Going further and trying to identify the Fe sites where
jumping (mainly) occurs is a very difficult task. We confine
ourselves to a few general remarks:

• The i-AlCuFe QC has a strong chemical order as shown
by the models of decoration given in [80], and EXAFS
refinement given by Simonet et al [60]. This is
consistent with the hypothesis of different Fe sites with
different environments and hence possibly different jump
characteristics. The same remark may explain why Fe and
Cu jumps are so different.

• The first Fe jump starting at 550 K does not change
the EFG. Thus it preserves the local symmetry. This is
actually the simplest type of flip of Penrose tiles and so
there are probably several different possibilities in the QC
lattice.

• One remarkable feature of the QC model of [80] is the
existence of a partially filled icosahedron occupied by Fe
atoms. An Fe jump from one vertex of this icosahedron
to another provides a likely candidate for the rotational
tiling flip observed above 800 K. However, cooperative
jumps involving several atoms are possible and, in fact,
most probable.

• The 1/1 AlSiCuFe approximants also exhibit a strong
chemical order and their chemical decoration is well
known (see [43] and references therein). It is closely

linked with that of the QC and again there are
probably several different possibilities for flips conserving
symmetry. Note that no partially filled icosahedron is
present in the α′ approximant. One is found in the
α approximant but is then occupied by Al. Hence, if
the symmetry-breaking jumps observed in the QC above
800 K are only due to Fe atoms on such an icosahedron,
they should not exist in the approximants studied here.
Unfortunately this hypothesis cannot be tested since it is
not possible to study the approximants at high enough
temperature.
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Appendix

In this appendix, the temperature dependences of the average
centre shift 〈δ〉 and recoilless fraction f (T ) are given in the
case of harmonic lattice vibrations (phonons). The nuclear
lifetime of (any) Mössbauer transition is long compared
with typical inverse phonon frequencies. Thus the lattice
displacement x and associated velocity v can be averaged
over many lattice oscillations, so that linear terms in x or v

cancel. The recoilless fraction is related to the mean square
displacement 〈x2〉 of the Fe nucleus in the direction of the
Mössbauer radiation [45]. The centre shift δ is the sum of
the chemical isomer shift δ0 and the temperature-dependent
second-order Doppler (SOD) shift δSOD(T ). δ0 is temperature-
independent as long as the sample does not undergo any phase
transformation. δSOD(T ) is related to the mean square velocity
of the Fe nuclei 〈v2〉 [45]. One has

ln f (T ) = −k2
〈
x2

〉
and δSOD(T ) = −

〈
v2

〉

2c
.

(A.1)
k is the magnitude of the wavevector of the Mössbauer
radiation (k = 7.29 Å−1) and c is the velocity of light. In
the harmonic approximation (see [81]), 〈x2〉 and 〈v2〉 can be
expressed as averages over the eigenfrequencies:

〈
x2

〉 = h̄

M

〈
ω−1

〉
and

〈
v2

〉 = 3h̄

M
〈ω〉 . (A.2)

M is the mass of the Mössbauer isotope. The different
moments 〈ωl〉 can be expressed as integrals over the (atomic-
partial) vibrational density of states (DOS) g(ω), the Bose
occupation factor n̄ and ωl :

〈
ωl

〉 =
∫ ∞

0
g(ω)

(
n̄ + 1

2

)
ωl dω. (A.3)
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Note that ln f (T ) will weight the lower frequencies and
δSOD(T ) the higher ones. Both the high temperature and zero
temperature limits can be given for 〈x2〉 and 〈v2〉 as functions
of the (temperature-independent) weighted mean frequencies
ω̃n where

ω̃n =
∫ ωm

0
g(ω)ωn dω. (A.4)

ωm is the highest frequency contributing to g(ω). The high
temperature limit is given by a Thirring expansion, convergent
for kBT > h̄ωm/2 where we give only the leading terms:

〈
x2

〉 � kT

M
ω̃−2 and

〈
v2

〉 � 3kT

M
. (A.5)

Both 〈x2〉 and 〈v2〉 are linear in T at high temperatures with
corrections decreasing as 1/T 2. 〈x2〉 is weighted by ω̃−2 and
thus the slope of ln f (T ) depends on the vibrational density
of states to leading order. 〈v2〉 goes to the temperature-
independent equipartition value. The zero temperature limits
give the effects of zero point motion:

〈
x2

〉 = h̄

2M
ω̃−1 and

〈
v2

〉 = h̄

2M
ω̃1. (A.6)

In the literature, the Debye expression for g(ω) is often
used [45]. In this approximation, g(ω) is parabolic up to
the maximum frequency and zero afterwards. This maximum
frequency in temperature units is the Debye temperature 	D.
The integrals in ln f (T ) and δSOD(T ) can be performed to
fit measured data to 	D. Well above 	D, − ln f = k2〈x2〉
is approximated by 6ERT/kB	2

D. ER is the recoil energy
(ER = E2

γ /2Mc2, where Eγ is the gamma ray energy). In
the same limit, δSOD(T ) decreases linearly with temperature
but with a universal slope equal to −3kBT/2Mc.

If a linear region in the resonant area a(T ) at elevated
temperatures is found, it can be easily converted into the
recoilless fraction f (T ). A simple shift of ln a(T ) so that the
extrapolated zero Kelvin intercept of the linear region is at zero
suffices to convert ln a(T ) to ln f (T ).
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Schröder K 1988 Phys. Rev. Lett. 61 195–8

[77] Torumba D, Parlinski K, Rots M and Cottenier S 2006 Phys.
Rev. B 74 144304

[78] Coddens G and Steurer W 1999 Phys. Rev. B 60 270
[79] Edagawa K and Kajiyama K 2000 Proc. 7th Int. Conf. on

Quasicrystals (Stuttgart, 1999) ed F Gähler, P Kramer,
H-R Trebin, K Urban; Sci. Eng. A 294–296 646

[80] Quiquandon M and Gratias D 2006 Phys. Rev. B 74 214205
[81] Housley R M and Hess F 1966 Phys. Rev. 146 517

15

http://dx.doi.org/10.1088/0953-8984/15/37/005
http://dx.doi.org/10.1088/0953-8984/18/35/022
http://dx.doi.org/10.1088/0953-8984/11/39/309
http://dx.doi.org/10.1134/1.1687873
http://dx.doi.org/10.1103/PhysRevLett.36.418
http://dx.doi.org/10.1007/BF01312998
http://dx.doi.org/10.1103/PhysRevLett.37.357
http://dx.doi.org/10.1016/S0921-5093(00)01132-1
http://dx.doi.org/10.1016/S0921-5093(00)01875-X
http://dx.doi.org/10.1080/14786430801958372
http://dx.doi.org/10.1080/14786430500278940
http://dx.doi.org/10.1016/S0921-5093(00)01328-9
http://dx.doi.org/10.1088/0953-8984/13/39/401
http://dx.doi.org/10.1088/0953-8984/13/39/402
http://dx.doi.org/10.1007/BF02146311
http://dx.doi.org/10.1016/0038-1098(89)90070-7
http://dx.doi.org/10.1023/A:1017040427368
http://dx.doi.org/10.1103/PhysRev.126.2059
http://dx.doi.org/10.1103/PhysRev.133.A1553
http://dx.doi.org/10.1103/PhysRev.134.A716
http://dx.doi.org/10.1007/BF02098293
http://dx.doi.org/10.1016/0038-1098(83)90966-3
http://dx.doi.org/10.1103/PhysRevLett.61.195
http://dx.doi.org/10.1103/PhysRevB.74.144304
http://dx.doi.org/10.1103/PhysRevB.60.270
http://dx.doi.org/10.1016/S0921-5093(00)01132-1
http://dx.doi.org/10.1103/PhysRevB.74.214205
http://dx.doi.org/10.1103/PhysRev.146.517

	1. Introduction
	2. Samples and experiments
	2.1. Samples
	2.2. Mössbauer experiments
	2.3. Neutron scattering experiments

	3. Results
	3.1. Low velocity Mössbauer results
	3.2. High velocity Mössbauer results on the 57Fe -enriched i-Al62Cu25.5Fe12.5 
	3.3. Neutron scattering results on the natural iron and 57Fe -enriched i-Al62Cu25.5Fe12.5 

	4. Discussion
	4.1. Summary of literature results
	4.2. Modelling results

	5. Conclusions
	Acknowledgments
	Appendix 
	References

